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On the nature of large fluctuations in equilibrium systems:
observation of an optimal force
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Received 26 May 1997

Abstract. An analogue electronic experiment is used to demonstrate that large fluctuations
in a thermal equilibrium system exhibit time-reversal symmetry and, furthermore, that they
arise through the action of anoptimal force that can be predicted on the basis of Hamiltonian
fluctuation theory.

Large fluctuations play a fundamental role in, for example, chemical reactions, nucleation
at phase transitions, mutations in DNA sequences, stochastic resonance, protein transport
in biological cells and failures of electronic devices. They also lie at the root of many
discussions of the origin of macroscopic irreversibility [1–6] and of the properties of far
from equilibrium systems [7–10]. The theory of large fluctuations, based on path integral
[3, 11] or Hamiltonian [12, 13] formulations of the problem, has proved very successful in
various applications to non-equilibrium systems (see, e.g., [9, 10, 14–19]).

In spite of the long-standing theoretical interest in the fundamental character of large
fluctuations, there have been almost no relevant experiments. Indeed, the very possibility
of such experiments has sometimes been doubted [4] on the grounds that large fluctuations
are by definition very rare events, and therefore difficult to investigate. It has recently been
shown, however, that optimal paths [10] (or instantons [9]), one of the central concepts
of the theory of large fluctuations, are physical observables [20, 21], thus exposing to
experimental scrutiny many fundamental assumptions and conclusions of the theory. One
such assumption is the existence of an optimal force corresponding to the optimal path
of a dynamical variable [11]. It is this assumption that makes possible the calculation
of the optimal path itself [14, 17]; and for some applications a simultaneous knowledge
of both optimal path and the optimal force is important [18]. However, the assumption
has never been tested experimentally and its validity for large deviations of the system
from the state of thermodynamic equilibrium is not immediately clear. It is particularly
important to verify the statement that the optimal force ‘dies’ at the maximum of large
fluctuations (see, e.g., [18]), and thus that the optimal force isasymmetrical in time,
whereas the average growth and decay of large fluctuations in equilibrium systems are
symmetrical[3, 7, 9, 10].

The Hamiltonian formulation is well understood to be a counterpart of the path integral
(or Lagrangian) formulation of the theory, but the identification of the momentum of the
auxiliary Hamiltonian system as a physical observable related to the optimal force has not
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been clearly established, even in the theoretical literature (see, e.g., [16, 19]). Thus it is
especially important to seek further insight. In this letter, we report the preliminary results of
a novelexperimentalapproach to the problem, applied to the analysis of large fluctuations in
an electronic analogue circuit model [22]. We demonstrate the predicted symmetry between
the average growth and decay of fluctuations and the existence of the optimal force, and we
provide experimental insight into the relationship between the optimal path of the random
force and the momentum of the auxiliary Hamiltonian system.

Consider one-dimensional Brownian motion within a force fieldK(x) subject to white
Gaussian noiseξ(t) in the limit of low noise intensity,D→ 0:

ẋ = K(x)+ ξ(t)
〈ξ(t)〉 = 0 〈ξ(t)ξ(0)〉 = Dδ(t). (1)

The variablex might represent, for example, the local energy density [2] or entropy [5]
in a solid or gas, a current or voltage in an electrical circuit (see below), the phase
of the order parameter in a superconducting quantum interference device (SQUID) [23],
or the number density of a species in a chemical reaction [10], or the phase of a
nonlinear optical interferometer [24]. A fluctuation occurs in two distinct sections, as
it first grows towards some remote statexf , and subsequently relaxes back towardsxs
corresponding to the stable stateS in the close vicinity of which the system spends most of
its time. The latter section can easily be understood [3] as a relaxation of the macroscopic
variable x towards its stable value along a deterministic trajectory corresponding to the
phenomenological law (1) withD = 0. The initial growth process of the fluctuation is
intuitively much less obvious, however, and has been the subject of continuing controversy
(see, e.g., [2, 25]). The theory of large fluctuations suggests that, for systems in thermal
equilibrium (Markovian processes obeying the property of detailed balance), not only the
average growth and decay of fluctuations [3, 7, 9, 10], but also the entire evolution of
the corresponding distributions should be symmetrical in time [6]. It also predicts [7–
10, 15–21], however, that the optimal force should be asymmetrical in time, being non-zero
during the growth, ‘dying’ at the maximum, and remaining zero during the decay of a
large fluctuation.

To investigate experimentally the statistics of large fluctuations, and the relationship
between their symmetry and the asymmetry of the optimal force, we have built an electronic
model of (1) withK(x) = x − x3 using standard techniques [22]. We drive it with
zero-mean quasi-white Gaussian noise from a noise generator, digitize the responsex(t),
and analyse it with a digital data processor. Such a system can be regarded as being in
equilibrium at a characteristic temperature that is related to the noise intensityD. Because
properties such as time symmetry and detailed balance (or the lack of them) are fundamental
characteristics of the motion, the technique is equally applicable to the analogue electronic
circuits studied in the present experiments, or to natural systems, or to technological ones:
provided they are governed by the same equations, identical behaviour is to be anticipated.
The value ofx(t) is monitored continuously until eventually, as shown in figure 1, a
large fluctuation occurs bringing the system to the pre-selected remote statexf . The
interesting region of the path—including the fluctuational part f coming toxf , as well as the
relaxational part r leading back towardsS—is then stored. An ensemble-average of such
paths, built up over a period of time (typically weeks), creates the distributionPf (x, t),
which provides very detailed information about the nature of the large rare fluctuations
occurring in the system:Pf (x, t) is shorthand forP(xi, ti; x, t; xf , tf ), the probability of
the system being atx at time t if it started fromxi at time ti and arrived atxf at time
tf , setting tf = 0 and xi = xs at ti = −∞; unlike the prehistory distribution [20, 21],
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Figure 1. Fluctuational behaviour measured and calculated for a model equilibrium system: a
double-well Duffing oscillator withK(x) = x−x3, for D = 0.014. (a) Two typical fluctuations
(jagged lines) from the stable state atS = −1 to the remote statexf = −0.1, and back again, are
compared with the deterministic (noise-free) relaxational path fromxf to S (full, smooth, curve)
and its time-reversed (t →−t) mirror image (broken curve). The fluctuational and relaxational
parts of the trajectory are labelled f and r respectively.

t > tf is considered as well ast < tf . In this sense,Pf (x, t) is a complete-history
probability density for the fluctuations coming toxf , encompassing the whole duration
of the system’s excursion away from the stable stateS. Figure 2 shows a distribution
Pf (x, t) built up through this procedure. The relaxational and fluctuational parts of the
distribution are found to be symmetrical in time (a more detailed comparison including
the higher moments will be given elsewhere). The top plane shows time-reversed curves
(see below) drawn through data points that represent the first moment of the evolving
distribution. In the macroscopic limit, where the width of the distribution would tend
towards zero (because effectivelyD → 0) we would therefore observe only the positions
of the ridges (the first moments in theD → 0 limit: see [7]), and the paths to/fromxf
would themselves become reversible in time as was first proved theoretically by Onsager
for a quadratic potential [3].

We note here that the experimental verification of the latter symmetry is important in
itself, not only because it clarifies the physical interpretation of the concept of the optimal
path [9, 10], but also because it is often discussed qualitatively in relation to physical
interpretations of the Boltzmann principle [2] and of the second law of thermodynamics [5].

These results can be interpreted in terms of the Hamiltonian (or equivalent path-
integral) theory of large fluctuations [7, 12, 13], whose conceptual basis we now summarize
succinctly. To emphasize the generality of the approach, we consider a system with a multi-
dimensional configuration space driven by the time dependent and in general non-gradient
force fieldK(x, t) (see, e.g., [8, 10, 16]). The corresponding Fokker–Planck equation for
the probability densityP(x, t) is

∂P (x, t)

∂t
= −∇ · (K(x, t)P (x, t))+ D

2
∇2P(x, t). (2)
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Figure 2. The probability distributionPf (x, t) built up by ensemble-averaging a sequence of
trajectories like those in figure 1. The top-plane plots the positions of the ridges (first moments)
of Pf (x, t) for the fluctuational (open circles) and relaxational (asterisks) parts of the trajectory
for comparison with theoretical predictions (curves) based on (4).

It can be solved in the limit of weak noise intensity by use of the WKB (eikonal)
approximation

P(x, t) = z(x, t)exp

(
− s(x, t)

D

)
. (3)

Herez(x, t) is a prefactor, ands(x, t) is a classical action satisfying the Hamilton–Jacobi
equation, which can be solved by integrating the Hamiltonian equations of motion

ẋ = p+K ṗ = −∂K
∂x
p

H(x,p, t) = pK(x, t)+ 1

2
p2 p ≡ ∇s (4)

with HamiltonianH(x,p, t) for appropriate boundary conditions [13, 16, 18]. Equations (4)
have two different types of solution, depending onp. For p = 0, the set of all trajectories
approaching the stable stateS forms the stable invariant manifold ofS. On this surface, the
dynamics of (4) reduce tȯx =K, which also describes relaxation of the system toS in the
absence of noise. One may expect that the finite noise intensity in a real system will just
give rise to a distribution about this deterministic path. The solutions of (4) withp 6= 0,
corresponding to the set of trajectories leavingS, form the unstable invariant manifold of
S. These trajectories are interpreted asoptimal pathsalong which the system will move
with overwhelming probability during a fluctuation fromS to a given remote statexf . For
a one-dimensional equilibrium system with a stationary force field without singularities,
K(x) = −U ′(x) whereU(x) is a potential. Then the classical action is 2U(x) and the
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momentum isp = 2U ′(x). It can be seen from equations (4) [7] that in this case the two
solutions forx (with p = 0 andp 6= 0) are mirror images of each other, as required by
symmetry between past and future [3]. (Note that the same isnot true of non-equilibrium
systems for which the outward and returning paths are predicted to be [9, 10], and have very
recently been shown to be [26], irreversible.) If we interpret the (D→ 0) theory as relating
to the ridges (first moments) of the distribution, we can then compare the prediction with
the data of figure 2. It is immediately evident that the ridges of the measured distribution
are in excellent agreement with the symmetrical deterministic paths found from (4), plotted
as the broken and full curves on the top-plane.
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Figure 3. Demonstration of time-irreversiblefeatures of the fluctuations. The inset showsp(x)

measured for two typical transitional paths fromx = −1 to x = 1 (full jagged line) and in
the opposite direction (dotted jagged line). The main figure shows the paths traced out by the
ridges (first moments) of thePf (p, x) distribution created from an ensemble average of such
transitions. The transitional path fromx = −1 to x = 1 is shown by squares, and the reverse
transition by filled circles. The full and broken curves are the corresponding paths predicted
from (4).

An immediate question arising from the Hamiltonian theory relates to the physical
significance of the quantityp, which plays the role of a momentum in (4). Intuitively,
one may infer that momenta appear in the theory because the coordinate corresponding to
each degree of freedom of the original macroscopic system gets accelerated by interaction
with the medium. This point is often glossed over in the theoretical literature, with some
authors describingp as a mere ‘theoretical abstraction’. In the particular case of our
analogue experiment, however, where the noise is external,p can be identified [27] as
the averaged value of the force driving the fluctuation—which is of course accessible
to experimental measurement (as is also the case for the random force in Monte Carlo
simulations of stochastic processes). Thus it becomes possible to perform direct tests of
Feynman’s proposition [11] of a one-to-one correspondence between the noise and the
response of the system, and of the extension [14, 17, 18] of this idea to the prediction of an
optimal forcegiving rise to any given optimal fluctuational path. We have therefore made
simultaneous measurements ofx(t) and of the corresponding trajectories of the random force
ξ(t) in the analogue model of (1) during transitions between the potential wells, i.e. setting
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xf = 0 on the local potential maximum. Examples of actual trajectories during escapes
from each of the potential wells are shown in the inset of figure 3, where they are compared
to the theoretical escape paths obtained from equations (4) in the phase space (x, p) of the
auxiliary Hamiltonian system. A distribution was built up by ensemble-averaging a few
hundred such trajectories, and the positions of the maxima of this distribution are shown in
figure 3 for comparison with the theoretical escape trajectories. We emphasize that, in the
limit of weak noise, such escape events are extremely rare. Although the statistics of these
events are consequently rather poor, the data clearly demonstrate: (i) that the averaged value
of the force driving the fluctuation follows closely the deterministic trajectory corresponding
to theoptimal force; (ii) that p can be related to thisoptimal force; (iii) that, as anticipated,
p 6= 0 during the fluctuational part of the path andp = 0 within experimental error during
the relaxational part; and (iv) that the Hamiltonian theory (curves) describes very well both
parts of the fluctuation.

It is also of interest to note that time reversal symmetry can be regarded as arising from
a degeneracy between the projections of two different curves in an extended (by thep-
dimension) phase space onto the space of the dynamical variables of an equilibrium system.
Such an extension of the phase space may seem an unnecessary complication for a system
in equilibrium, as in the present case, but it provides the key to understanding fluctuations in
far-from-equilibrium systems, where the degeneracy is lifted by the presence of an external
field [26].

The results have shown that large fluctuations in a thermal equilibrium system exhibit
time-reversal symmetry and, furthermore, that they arise through the action of anoptimal
force that can be related to the momentump introduced by Hamiltonian fluctuation theory
(see e.g. [9, 10, 13–19]) which is asymmetrical in time. The same technique is being applied
successfully to non-equilibrium systems [26]. It not only promises possible insights into
long-standing questions [2, 5] about the role of fluctuations in irreversibility, but it is also
quite generally applicable to a very wide range of ideas and problems in fluctuation theory
that as yet remain untested by experiment.

The research, supported by the Engineering and Physical Sciences Research Council (UK),
the Royal Society of London, and the Russian Foundation for Basic Research could not have
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help and encouragement of M I Dykman and P V E McClintock.
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